What is building biology?

 Building Biology deals with the interrelationship between our built environment and our health, as well as the impact our buildings have on the greater environment

"Sick Building Syndrome"

 Sick Building Syndrome is where a building becomes a toxic environment for humans and animals due to poor design, poor management, water damage, or a combination of them all

Orientation

- House to face north to take advantage of thermal mass, light etc
- As a general rule, build on east-west axis with living quarters on (warmer, brighter) northern side and bedrooms on (cooler) southern side

Layout of the Site

- PRINCIPLE Ensure that either the slope of the land, or drains, keep water away from building
- IDEAL If site is sloped away from house, or house is on stumps if on the side of a hill

If building on a hill

- To reduce likelihood of water damage, build on top of the slope rather than digging into the slope
- If you want to build into the slope, ensure adequate drainage and complete separation of building from soil
- Direct the water away from your building otherwise it will find its way in!
- Moist ground makes it easier for termites

Getting the Foundations Right

Concrete slab

Ensure:

- the slab must be allowed to cure fully (otherwise ensure on-going ventilation in the walls)
- timber framing must be fully dry when cladding affixed

Getting the Foundations Right (cont'd)

Stumps (brick/wood/metal etc) including brick perimeter footings

Ensure:

adequate crawl space (450mm from bearers)

appropriately sized air vents to allow subfloor ventilation

 topsoil to be removed to reduce mould growth

Building Materials

- Use materials that have the least amount of toxins in them, so as to reduce the amount of off-gassing that will occur after installation
- Wrap the home with a vapour permeable membrane to allow moisture to move through the building envelope
- To the greatest extent, ensure building materials are dry and waterproofing membranes fully cured

Exterior

- Roof and guttering
 - No flat roofing
 - No hidden/box guttering
 - Guttering and drains to be able to handle very heavy downfalls (a worthy investment as it only takes one event to create damage that can be very expensive to remediate)

Gardens

NO gardens or soil to be in contact with

building

Adequate drainage

Interior

- Entry foyer (take off shoes)
- Heating
 - No unflued gas heaters
- Wet areas (bathrooms, kitchen and laundry)
 - Use appropriately sized exhaust fan (vented to exterior)
 - ensure waterproofing membranes (eg in bathroom) are allowed to cure thoroughly during construction

Interior (cont'd)

- Flyscreens
- If flooding occurs completely dry out within 24 hrs
- If you discover a leak remove/replace any damaged building materials, furniture etc
- Moist building materials encourage ants, cockroaches, and termites

Indoor climate

- Regulate indoor air humidity by using humidity-buffering materials and dehumidifier(s)
- Minimize exposures to mould, bacteria, dust, and allergens
- Promote good indoor air quality through natural ventilation

Ideal Humidity Levels

 Indoor relative humidity at around 50%. Once it gets to 60%, then dust mites start to thrive. If it gets to 70% then mould starts to grow

Dehumidifiers & Wardrobe Heaters

- I always recommend getting some cheap hygrometers to become familiar with the levels of humidity throughout the day
- The second recommendation is to invest in a dehumidifier (particularly for the bedroom)
- If you're not a fan of doorless wardrobes, the way to reduce the likelihood of mould in a wardrobe is to use wardrobe heaters (such as Dampchaser)

Glazing

- Have eaves over windows
- When selecting windows consider:
 - sun/heat gain/heat loss
 - Small windows on southern and western sides
 - Large windows on northern side and medium on eastern side (unless wanting lots of morning sun)

Thermal mass

 Note: If a part of the thermal mass does not see the sun, it will act as a heat sink

Insulation

- Ensure all exterior walls and the ceiling cavity are completely insulated
- Anywhere the ceiling or wall insulation is pierced (eg windows, fans, skylights, stairs, lights) means a reduction in insulating capacity
- Thus put in as much (good) insulation as you can afford

Ventilation

Lack of ventilation increases carbon dioxide, VOCs (from off-gassing of new carpets, flooring, cupboards and furniture),

moisture, dust and mould

- Passive ventilation
- Ceiling fans

Ventilation of roof space (eg Whirly birds)

Inadequate ventilation + moisture =

 Ensure size of fan/window can cope with amount of moisture generated in the bathroom

